### Networks

## Structure

M Saeedian et al. How visas shape and make visible the geopolitical architecture of the planet. arXiv:1601.06314.

DF Gleich. PageRank beyond the Web. arXiv:1407.5107.

#### Edges

- C Mavroforakis et al. Spanning Edge Centrality: Large-scale Computation and Applications. WWW, 2015.
- D Grady, C Thiemann, D Brockmann. Robust classification of salient links in complex networks. Nature Communications, 2012.

##### Weak-tie

- The paradox of weak ties in 55 countries. Journal of Economic Behavior & Organization, 2017.

#### Random walks

- BF Maier, D Brockmann. Cover time for random walks on arbitrary complex networks. arXiv:1706.02356.
- N Masuda, MA Porter, R Lambiotte. Random walks and diffusion on networks. Physics Reports, 2017. arXiv:1612.03281.

- T Kawamoto. Localized eigenvector of the non-backtracking matrix. arXiv:1505.07543.
- R Pastor-Satorras, C Castellano. Distinct types of eigenvector localization in networks. arXiv:1505.06024.

#### K-core

#### Rich-club

- The diverse club. Nature Communications, 2017.

- N Tatti and A Gionis. Density-friendly graph decomposition. In Proc. WWW 2015.

- T. Verma et al. Emergence of core–peripheries in networks. Nature Communications, 2016.

##### Null models

- C Orsini, et al. Quantifying randomness in real networks. Nature Communications, 2015.
- R Fischer, JC Leitão, TP. Peixoto, EG Altmann. Sampling Motif-Constrained Ensembles of Networks. PRL, 2015.

#### Network Growth Models

- K Zuev, M Boguñá, G Bianconi, D Krioukov. Emergence of Soft Communities from Geometric Preferential Attachment. Scientific Reports 5: 9421, 2015.
- F Papadopoulos, M Kitsak, MÁ Serrano, M Boguñá, D Krioukov. Popularity versus similarity in growing networks. Nature 489, 537-540, 2012.
- S Fortunato, A Flammini, F Menczer. Scale-Free Network Growth by Ranking. Phys. Rev. Lett. 96, 218701, 2006.

#### Directed Networks

- G. Timár, AV Goltsev, SN Dorogovtsev, JFF Mendes. Mapping the Structure of Directed Networks: Beyond the "Bow-tie" Diagram. arXiv:1607.00691.
- M Gabielkov, A Rao, A Legout. Studying social networks at scale: macroscopic anatomy of the twitter social graph. SIGMETRICS, 2014.

#### Network Comparison

- M De Domenico, J Biamonte. Spectral entropies as information-theoretic tools for complex network comparison. arXiv:1609.01214.
- D Asta, CR Shalizi. Geometric Network Comparison. UAI 2015.

#### Statistical Network Models

##### Stochastic Block Models

- AY Zhang, HH Zhou. Minimax rates of community detection in stochastic block models. AoS, 2016.
C Matias, V Miele. Statistical clustering of temporal networks through a dynamic stochastic block model. B, 2016.

S Bhattacharyya, PJ Bickel. Subsampling bootstrap of count features of networks. Ann. Statist. 43, 2384-2411 (2015).

- PN Krivitsky, ED Kolaczyk. On the Question of Effective Sample Size in Network Modeling: An Asymptotic Inquiry. Statist. Sci. 30(2): 184-198, 2015.
CE Tsourakakis. Provably Fast Inference of Latent Features from Networks. In Proc. WWW 2015.

C Borgs, JT Chayes. Graphons: A Nonparametric Method to Model, Estimate, and Design Algorithms for Massive Networks. arXiv:1706.01143.

- PJ Wolfe, SC Olhede. Nonparametric graphon estimation.. arXiv:1309.5936.

- S Horvát, É Czabarka, Z Toroczkai. Reducing Degeneracy in Maximum Entropy Models of Networks. Phys. Rev. Lett. 114: 158701, 2015.

- F Di Patti, D Fanelli, F Piazza. Optimal search strategies on complex multi-linked networks. Scientific Reports 5: 9869, 2015.

- M Lenormand, A Bassolas, JJ Ramasco. Systematic comparison of trip distribution laws and models. arXiv:1506.04889.

#### Network Geometry

##### Hyperbolic space

Machine learning meets complex networks via coalescent embedding in the hyperbolic space. Nature Communications, 2017.

Multiscale unfolding of real networks by geometric renormalization. arXiv:1706.00394.

- The geometric nature of weights in real complex networks. Nature Communications, 2017.
- Latent geometry of bipartite networks. arXiv:1610.09048.
G García-Pérez, M Boguñá, A Allard, MÁ Serrano. The hidden hyperbolic geometry of international trade: World Trade Atlas 1870–2013. Scientific Reports, 2016.

D Krioukov. Clustering Implies Geometry in Networks. PRL, 2016.

#### Percolation

- Y Lin, W Chen, Z Zhang. Assessing Percolation Threshold Based on High-Order Non-Backtracking Matrices. WWW 2017.
- Inferring Personal Economic Status from Social Network Location. arXiv:1704.01572

#### Sampling

# Estimating Population Size With Link-Tracing Sampling. JASA, 2017.

#### Bipartite Networks

#### Multilayer Networks

- A Solé-Ribalta et al. Random walk centrality in interconnected multilayer networks. arXiv:1506.07165.
- B Fotouhi, N Momeni. Growing Multiplex Networks with Arbitrary Number of Layers. arXiv:1506.06278.
- F Battiston et al. Emergence of multiplex communities in collaboration networks. arXiv:1506.01280.
- S Paul, Y Chen. Community detection in multi-relational data with restricted multi-layer stochastic blockmodel. arXiv:1506.02699.
- R Gallotti, MA Porter, M Barthelemy. Information measures and cognitive limits in multilayer navigation. arXiv:1506.01978.
- J Iacovacci, Z Wu, G Bianconi. Mesoscopic Structures Reveal the Network Between the Layers of Multiplex Datasets. arXiv:1505.03824.
- F Battiston, V Nicosia, V Latora. Biased random walks on multiplex networks. arXiv:1505.01378.
- D Cellai, G Bianconi. Multiplex networks with heterogeneous activities of the nodes. arXiv:1505.01220
- M De Domenico, A Lancichinetti, A Arenas, M Rosvall. Identifying Modular Flows on Multilayer Networks Reveals Highly Overlapping Organization in Interconnected Systems. Phys. Rev. X 5: 011027, 2015.
- S Hwang, S Choi, D Lee, B Kahng. Efficient algorithm to compute mutually connected components in interdependent networks. Phys. Rev. E 91, 022814, 2015.
- T Valles-Catala, FA Massucci, R Guimera, M Sales-Pardo. Multilayer stochastic block models reveal the multilayer structure of complex networks. arXiv:1411.1098
- CM Schneider, NAM Araújo, HJ Herrmann. Algorithm to determine the percolation largest component in interconnected networks. Phys. Rev. E 87, 043302, 2013.

#### Traffic Networks

- Pendular behavior of public transport networks. PRE, 2017.
- M Popović, H Štefančić, V Zlatić. Geometric Origin of Scaling in Large Traffic Networks. PRL, 2012.

#### Homophily vs Influence in Social Networks

- F Morone et al. Collective Influence Algorithm to find influencers via optimal percolation in massively large social media. arXiv:1603.08273.

A Motter. Y Yang. The unfolding and control of network cascades. Physics Today, 2017.

MW Mahoney. Lecture Notes on Spectral Graph Methods. arXiv:1608.04845, 2016.